Heatwaves and urban thermal climates in Berlin, Germany.
Zitierfähiger Link:
Keine Vorschau verfügbar
Datum
2020
item.page.journal-title
item.page.journal-issn
item.page.volume-title
Herausgeber
Sprache (Orlis.pc)
DE
Erscheinungsort
Berlin
Sprache
ISSN
ZDB-ID
Standort
Dokumenttyp
Dokumenttyp (zusätzl.)
DI
EDOC
EDOC
Autor:innen
Zusammenfassung
Aufgrund des globalen Klimawandels haben das Auftreten, die Dauer und die Intensität von Hitzewellen zugenommen. Klimaprojektionen zeigen zudem einen weiteren Anstieg in den nächsten Jahrzehnten. Gleichzeitig führt die fortlaufende Verstädterung dazu, dass immer mehr Menschen potentiell von Hitzewellen betroffen sind, da Städte atmosphärische Bedingungen verändern. Das bekannteste Beispiel dafür ist das Phänomen der ‘städtischen Wärmeinsel’ (urban heat island – UHI). Dies beschreibt, dass Städte typischerweise höhere Lufttemperaturen (T) als die umgebenden ländlichen Gebiete aufweisen. Ziele der Arbeit sind die Untersuchung von Hitzewellen und der bodennahen T in Berlin, Deutschland. Dabei spielen die Fragen, wie sich langjährige Mittelwerte und Langzeittrends von Hitzewellencharakteristika verhalten, ob in der Stadt mehr Hitzewellen als in der Umgebung verzeichnet werden, wie die UHI-Intensität (UHII) während Hitzewellen modifiziert wird und wie bodennahe T innerhalb Berlins räumlich differenziert ist, die zentralen Rollen. Die Fragen werden mit Hilfe eines integrativen Ansatzes, der verschiedene bodengestützte Messdaten kombiniert, untersucht. Dazu zählen homogene Klimazeitreihen, Daten hoher Qualität von Stationen, die professionell betrieben werden (professionally- operated weather stations – PRWSs) sowie Daten von Bürgerwetterstationen (citizen weather stations – CWSs). Langzeittrends von Hitzewellencharakteristika zeigen, dass das Auftreten und die Dauer von Hitzewellen seit Ende des 19. Jahrhunderts im Untersuchungsgebiet zugenommen haben. Allerdings zeigen unterschiedliche Hitzewellendefinitionen unterschiedliche Trends. Ein Vergleich zweier Methoden zur Trendberechnung offenbart zudem weitere Unterschiede der Trends. Innerhalb der Stadt werden mehr und längere Hitzewellen als am Stadtrand verzeichnet, wobei dieser Aspekt von der angewendeten Hitzewellendefinition abhängig ist. Um die räumliche Heterogenität von T innerhalb von Städten mit Messdaten zu erfassen, werden dichte Messnetze gebraucht. Eine Möglichkeit, solch hochauflösende Daten zu erhalten, sind CWSs – Stationen, welche von Bürgern aufgestellt und betrieben werden. Um diese Daten zu nutzen, wurde eine automatische Routine entwickelt, welche die Daten eines Typs von CWS über das Internet sammelt, prüft und speichert. Insgesamt zeigt sich, dass CWSs gut in Untersuchungen der städtischen T-Bedingungen angewendet werden können, insbesondere aufgrund ihrer hohen Anzahl und der unterschiedlichen örtlichen Gegebenheiten, in denen sie aufgestellt sind. Da Städte Treiber des Klimawandels sind und selbst atmosphärische Bedingungen verändern, müssen sie an heißen Episoden und andere Klimaextreme mit geeigneten Maßnahmen angepasst werden, um negative Auswirkungen dieser Episoden zu vermindern. Wissenstransfer zwischen Wissenschaft, Anwendung und Politikgestaltung sind in dieser Hinsicht dringend nötig.
Due to global climate change, frequency, duration, and intensity of heatwaves (HWs) have increased globally, and are projected to further increase. At the same time, ongoing urbanisation puts more and more people at risk of being adversely affected by HWs, as cities alter atmospheric conditions. Most prominent among these alterations is the phenomenon of the ‘urban heat island’ (UHI), describing that cities typically exhibit higher air temperatures (T) than their surrounding rural areas. The aims of this thesis are to investigate different aspects concerning HWs and urban thermal climates in Berlin, Germany. Central to this work are the questions how long-term mean values and trends of HW characteristics behave, if more HWs are recorded within the city compared to the surroundings, how UHI intensity (UHII) is modified during HWs, and how near-surface T is spatially distributed within Berlin. An integrative approach using different ground-based observational data is applied. This approach combines homogeneous long-term climate data, high-quality data from a dense network of professionally-operated weather stations (PRWSs), and crowdsourced data from citizen weather stations (CWSs). Long-term trends of HW characteristics show that since the end of the 19th century, frequency and duration of HWs have increased in the study region. However, different HW definitions show different trends, and by comparing two trend estimation methods, further contrasts are found. It is also shown that more and longer HWs are recorded in the city than in the periphery, though this feature depends on the applied HW definition. To capture spatial T heterogeneity within urban regions with observations, dense station networks are required. One solution to obtain such data are CWSs, stations installed and maintained by citizens. An automatic routine was set up to collect, check, and store T data from one type of CWS. Overall, the analyses highlight high applicability of CWS data in urban thermal climate investigations, especially due to their large number and the variety of settings they are located in. Being drivers of climate change, and altering atmospheric conditions themselves, cities need to adapt to HWEs and other climate extremes by targeted measures to reduce negative impacts caused by them. In this respect, knowledge transfer between science, practice, and policy making is crucially needed.
Due to global climate change, frequency, duration, and intensity of heatwaves (HWs) have increased globally, and are projected to further increase. At the same time, ongoing urbanisation puts more and more people at risk of being adversely affected by HWs, as cities alter atmospheric conditions. Most prominent among these alterations is the phenomenon of the ‘urban heat island’ (UHI), describing that cities typically exhibit higher air temperatures (T) than their surrounding rural areas. The aims of this thesis are to investigate different aspects concerning HWs and urban thermal climates in Berlin, Germany. Central to this work are the questions how long-term mean values and trends of HW characteristics behave, if more HWs are recorded within the city compared to the surroundings, how UHI intensity (UHII) is modified during HWs, and how near-surface T is spatially distributed within Berlin. An integrative approach using different ground-based observational data is applied. This approach combines homogeneous long-term climate data, high-quality data from a dense network of professionally-operated weather stations (PRWSs), and crowdsourced data from citizen weather stations (CWSs). Long-term trends of HW characteristics show that since the end of the 19th century, frequency and duration of HWs have increased in the study region. However, different HW definitions show different trends, and by comparing two trend estimation methods, further contrasts are found. It is also shown that more and longer HWs are recorded in the city than in the periphery, though this feature depends on the applied HW definition. To capture spatial T heterogeneity within urban regions with observations, dense station networks are required. One solution to obtain such data are CWSs, stations installed and maintained by citizens. An automatic routine was set up to collect, check, and store T data from one type of CWS. Overall, the analyses highlight high applicability of CWS data in urban thermal climate investigations, especially due to their large number and the variety of settings they are located in. Being drivers of climate change, and altering atmospheric conditions themselves, cities need to adapt to HWEs and other climate extremes by targeted measures to reduce negative impacts caused by them. In this respect, knowledge transfer between science, practice, and policy making is crucially needed.
item.page.description
Schlagwörter
Zeitschrift
Ausgabe
Erscheinungsvermerk/Umfang
Seiten
X, 181